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BATTLESHIPS AS DECISION PROBLEM

Merlijn Sevenster1

Amsterdam, The Netherlands

ABSTRACT

We define the well-known puzzle of Battleships as a decision problem and prove it to beNP-
complete, by means of a parsimonious reduction. By applyingValiant and Vazirani’s (1986)
result we immediately obtain that the variant of this problem, viz. promising that there is
a unique solution, isNP-complete as well, under randomized reductions. As this finding is
in sheer contrast with the general experience of Battleshippuzzles being well playable (i.e.,
effectively solvable), we arrive at a hypothetical explanation for this state of affairs.

1. INTRODUCTION

Nowadays many newspapers and magazines contain a variety ofpuzzles. A great deal of them can be
called logical puzzles, as every step in the process of solving is supposed to be logically necessitated.
Popular examples of such games are Battleships and Nonograms (or Japanese puzzles). (Note that certain
Minesweeper puzzles can be considered logical puzzles as well, ignoring the ones in which one at some
stage inevitably has to guess to get any further.)

In this article we study the logical puzzle of Battleships (also known as ‘Fathom it!’) from a complexity
point of view. Battleships puzzles are well playable and areregularly found in magazines, newspapers,
and on the Internet, (e.g., Puzzelsport, 2003). This particular formal angle learns us to appreciate the
relationship between the logical (and effective) solvability on the one hand and the consequences concerning
computational classification on the other hand. Although wewill only discuss Battleships, we are convinced
that the formal results established in this contribution can be transferred to many other logical puzzles.

A Battleships puzzle consists of a puzzle-grid, a column androw tally, and a fleet containing a certain
number of ships of varying length (the width of a ship is1). The initial grid is partially filled with ship
segments or water (denoting the absence of a ship segment). The goal of a puzzle is to show that the
provided ships can be positioned on the puzzle-grid, meeting the following four conditions:

C1: all ships in the fleet are put in the grid;

C2: the indications in the initial grid are respected;

C3: no two ships occupy adjacent (orthogonally or diagonally) squares;

C4: the number of ship segments in column (row)i is equal to theith value of the column (row) tally.

As a case in point, we reproduce a small puzzle in Figure 1 thatis used in a commercial magazine to
explain the essence of Battleships. The puzzle on the left-hand side shows the initial puzzle; the puzzle in
the middle shows it at some intermediary stage of the solvingprocess; the puzzle on the right-hand side
depicts the solution. As the reader can check the last puzzlemeets conditions C1 to C4.
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Figure 1: The almost-empty grid on the left plus the fleet (given on theright) make up a Battleships puzzle,
that has the puzzle on the right as its solution. The puzzle inthe middle depicts an intermediary stage one
might encounter while solving the puzzle. The puzzle on the right satisfies conditions C1 to C4. (Puzzle
copied, with permission, from July/August 2003Puzzelsport issue. Copyrights remain withPuzzelsport.)

1.1 The Course of the Article

We will define the Battleships puzzle as a decision problem inSection 2 and argue that it is obviouslyNP-
complete. In Section 3 we give a parsimonious reduction, that again establishesNP-completeness of the
Battleships decision problem.

A reduction is parsimonious, if it preserves the number of solutions. Valiant and Vazirani (Undefined ref-
erence) showed that if the classical satisfiability problem is parsimoniously reducible to some problemA,
then its promise variant,PROMISEA is alsoNP-hard, under randomized reductions. Valiant and Vazirani
definePROMISEA as follows:

Input: an instancea of A

Output: a solution toa
Promise: a has exactly one solution.

We will use the property of parsimonicity in Section 4, when we will show that the promise variant of
the Battleships problem isNP-complete as well, under randomized reductions. This result is interesting,
since the promise variant of the problem is the puzzle we actually solve at our leisure, assuming that every
Battleships puzzle has exactly one solution. As to Battleships, printed solutions in magazines or an expert
function on Internet are tacit hints in this direction. As toother logical puzzles such as Nonograms, the
solution is a picture, and as such must be unique.NP-hardness of the promise variant of Battleships is
surprising in the sense that while solving a puzzle that is guaranteed to have a unique solution, one does
not feel forced to guess non-deterministically the positions of ship segments or water. Instead, every step
in the process of solving a ‘commercial’ puzzle seems necessitated by the current state of the puzzle and
the conditions C1 to C4. In fact, this is what makes Battleships puzzles in magazines logical puzzles.
In Section 5, we give hints as to how one might generate logical Battleships puzzles that are solvable by
humans. Section 6 contains a summary of results.

2. THE DECISION PROBLEM OF BATTLESHIPS

Formally, we treat anm × n-sized Battleships puzzle (m rows andn columns) as a tuple〈I, C,R, F 〉,
where

I : {1, . . . ,m} × {1, . . . , n} → {ship, water, ?}

is a function that represents the initial filling of the starting grid. For instance,I(i, j) = ship denotes that
cell (i, j) contains a ship segment. IfI(i, j) = ?, cell (i, j)’s filling is not given: it is up to the puzzle solver
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to fill it with either a water or a ship segment.C is a function representing the column tally by adding a
number2 to every columni ∈ {1, . . . , n}; idem for the functionR representing the row tally, with respect
to j ∈ {1, . . . ,m}. The functionF represents the fleet: there areF (k) ships of ship-lengthk.

If J is a function such that

J : {1, . . . ,m} × {1, . . . , n} → {ship, water};

it is the case thatI(i, j) = J(i, j), if I(i, j) 6= ?; andJ meets condition C1 to C4 with respect toC, R and
F , thenJ is asolution to the Battleships puzzle〈I, C,R, F 〉. This formalizes the notion of solution that we
used intuitively, when we considered the small puzzle in Figure 1.

In some Battleships puzzles one does not only learn that there is a ship segment in a certain field, but also
whatkind of ship segment is on that field, e.g., the ship segment on cell(2, 3) in Figure 1. This limitation,
however, does by no means affect any of the results in this article, as every problem as defined above is also
a decision problem in the broader sense.

Throughout the article we will take it for granted that we canharmlessly switch between (parts of) the
formalization of a puzzle and (parts of) its visual representation. For instance, it is an easy exercise to
formalize the puzzle from Figure 1.

We base the decision problemBATTLESHIPSon the Battleships puzzle as follows: Given a Battleships puz-
zle 〈I, C,R, F 〉; does this puzzle have a solution?

It is easily obtained thatBATTLESHIPS is NP-complete. Below we give a reduction, proposed by Kaye
(Undefined reference), from BIN PACKING. In line with Papadimitriou (Undefined reference), we define
(a slight variant of) theBIN PACKING problem as follows:

Input: n positive integersa1, . . . , an (the items), two integersC (the capacity)
andB (the number of bins) such thata1 + . . . + an = CB

Question: cana1, . . . , an be partitioned intoB subsets, each of which has total sum exactlyC?

We transform an instance ofBIN PACKING into a BATTLESHIPS puzzle by reserving a vertical strip of
lengthai per pair of itemai and binb ∈ {1, . . . , B}. All other cells are initially filled with water. Note that
this reduction assumes that the numbersa1, . . . , an are represented inunary, since the strips themselves
are unary representations of these numbers. This assumption does not effect the result, since the problem
BIN PACKING is still NP-complete if its numbers are represented in unary. This property makes the problem
strongly NP-complete. For definitions we refer toUndefined reference.

The idea is that every open strip represents the possibilityof itemai being put in binb (see Figure 2a).The
item itself is represented by a ship of lengthai. To make sure that every itemai is placed in only one bin,
we have1s on the relevant row tally. This also enforces that every ship of lengthai is put on a strip of
exactly lengthai. The reason is as follows: suppose one would put a ship of length less thanai on a strip
of lengthai, then at least one ship of greater lengthaj would have to be placed on a strip which is shorter
thanaj ; this is evidently impossible.

This reduction proves thatBATTLESHIPS is NP-hard. It is easy to see that a non-deterministic guess is
checked to be a solution in polynomial time. HenceBATTLESHIPS is NP-complete. However, although the
provided reduction is parsimonious, no such reduction exists from3-SAT to BIN PACKING. If an instance
of BIN PACKING has one solution, it must haveB! solutions, due to permuting the contents of theB bins.
This prevents us from applying Valiant and Vazirani’s (1986) result. In the next section we will therefore
prove the existence of a parsimonious reduction from3-SAT to BATTLESHIPS.

2Formally,C is of type{1, . . . , n} → {0, 1, . . .}. Puzzles withincomplete tallies are quite playable as well, that is, every column
is assigned a natural number or no number at all; which formally boils down toC : {1, . . . , n} → {0, 1, . . .} ∪ {?}. In this article
we will restrict our attention to the latter, as any result proved can be transferred to the former.
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Figure 2: (a) schematically shows a reducedBIN PACKING instance. Every columnb ∈ {1, . . . , B} rep-
resents a bin, that possibly contains itemai. Every itemai is represented by one ship of lengthai in the
resulting puzzle; putting itemai in bin b amounts to putting a ship of lengthai in thebth column. (b) depicts
the grid that forms the basis of the reduction ofϕ to an instance ofBATTLESHIPS. The lower right-corner is
always filled with water. Depending on the structure ofϕ, gadgets will be put on the regions marked with
X, Y , andZ.

3. THE PARSIMONIOUS REDUCTION

In this section, we will show the existence of a parsimoniousreduction from3-SAT to our Battleships deci-
sion problem.

TheoremThere exists a parsimonious reduction from3-SAT to BATTLESHIPS.

Proof We will prove this by providing two parsimonious reductions: one from3-SAT to an intermediary
problem3, {3, 4}-SAT, and the other from3, {3, 4}-SAT to BATTLESHIPS. 3-SAT is the set of satisfiable
boolean formulae that are in conjunctive normal form and have three literals per clause. As usual, we
assume that no variable occurs twice in a single clause.3, {3, 4}-SAT is the subset of3-SAT that contains all
satisfiable formulae with exactly three variables per clause and every variable occurring three or four times.
Deciding whether an instance of3, {3, 4}-SAT is satisfiable was provenNP-complete by Tovey (Undefined
reference); the result was established by a parsimonious reduction from3-SAT.

We will devote the remainder of this proof to a parsimonious reduction from3, {3, 4}-SAT to BATTLESHIPS.
To this end, letϕ ≡ C1 ∧ . . . ∧ Cm be an instance of3, {3, 4}-SAT over the variablesx1, . . . , xn.

Figure 2b outlines the Battleships puzzle obtained by the reduction ofϕ. In Figure 2b, we associate with
every clauseCi and variablexj a regionXij . Furthermore, every clauseCi (variablexj , respectively) is
associated with a region markedYi (Zj , respectively). We construct the puzzle by putting gadgetsin the
regions marked withX, Y , andZ alongside with providing the fleet and the row and column tallies, using
ϕ. We end the construction with fixing the remaining open tally-values. We proceed as follows.

• For Xij : if xj occurs positively inCi put in the gadget from Figure 3a; ifxj occurs negatively in
Ci put in the gadget from Figure 3b; otherwise — ifxj does not occur inCi — put in the all-water
gadget from Figure 3c. All gadgets are of height8i+3. If xj occurs inCi, we add one ship of length
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1, theXij-ship, to the fleet.

• ForYi: put in the gadget from Figure 3d of height8i + 3; add one ship of length4i + 1, one ship of
length4i and one ship of length1. The added ships we callYi-ships. This gadget also determines the
row tally for the rows intersectingYi.

• For Zj : if xj occurs four times inϕ put in the gadget from Figure 3e and add a ship of length4;
otherwise — ifxj occurs three times — put in the gadget from Figure 3f and add a ship of length3.
The added ship we call theZi-ship. This gadget also determines the row tally for the rowsintersecting
Zj .

• We conclude the construction by assigning tally-values to the bottom-most rows and right-most
columns, that until now remained open:

row tally-value column tally-value

9m + 1 0 3n + 1
∑

1≤i≤m(4i + 1)

9m + 2 n4 3n + 2 0
9m + 3 n 3n + 3

∑

1≤i≤m(4i + 1)

9m + 4 n

9m + 5 n,

wheren4 equals the number of variables that occur four times inϕ.

It suffices to show that the number of truth assignments satisfying ϕ equals the number of solution to the
Battleships puzzle above. In fact we will show that every satisfying truth assignment ofϕ corresponds to
exactly one solution ofϕ’s reduction, and vice versa.

Assumeϕ has a satisfying truth assignmentt : {x1, . . . , xm} → {true, false}. Then we will solve the
reduced puzzle usingt as follows. For every variablexj occurring in clauseCi we put theXij-ship

in thenorth-east slot, if xj occurs positively inCi andt(xj) = true (see Figure 4a);

in thesouth-west slot, if xj occurs positively inCi andt(xj) = false (see Figure 4b);

in thesouth-east slot, if xj occurs negatively inCi andt(xj) = true (see Figure 4c);

in thenorth-west slot, if xj occurs negatively inCi andt(xj) = false (see Figure 4d).

It is immediate thatt is uniquely encoded by the position of theXij-ships.

Whether the truth assignment ofxj contributes to the truth of its clauseCi depends on whetherxj occurs
negatively or positively inCi. For instance, ifxj occurs negatively inCi, the gadget from Figure 3b is
on regionXij . Furthermore assume thatxj is assignedtrue — so it does not contribute to the truth ofCi

—, then theXij-ship must be put on the right open slot. Consequently it is put on the lower row. From
Figure 4 it becomes clear that anXij-ship is put in the lower open slot iff it does not contribute to Ci being
true. Sincet is a satisfying assignment, at least one ofCi’s literals is true. In the Battleships puzzle this
corresponds to at least oneFXij-ship being put on the upper row.

The gadget onYi (see Figure 3d) and its tally can be satisfied for any arrangement ofXij-ships where the
number of ships in the upper (lower) row is at least (most) one(two). As to the number ofX-ships on the
upper row we make a case distinction.

Assume the upper row containsthree X-ships, then the corresponding row tally is already satisfied.
The remainder of gadgetYi canonly be solved by arranging theYi-ships as in Figure 5a.

Assume the upper row containstwo X-ships, then Figures 5b and 5c depict the possible solutions.
We rule out the solution depicted in 5b by demanding that the first and third column of theY -gadgets
contain

∑

1≤i≤m 4i + 1 ship segments. If one would choose the pattern from Figure 5b, one would
never be able to solve the puzzle due to this constraint.
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Figure 3: Gadgets a, b, and c are used to fill regions marked with anX. Gadget d is put on regions marked
with aY , and gadgets e and f are put on regions marked with aZ.
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Figure 4: The four possible configurations of anXij-ship of on anX-gadget, reflecting a variable that is
assignedtrue (a and c) orfalse (b and d), while occurring positively in its clause (a and b) or negatively (c
and d).
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Figure 5: The gadget onYi from Figure 3d must be solvable iff the fifth row associated with Ci contains at
least one ship segment. Thus, it must be solvable in case thisfifth column contains three segments (a); two
segments (b and c); and one segment (d).

Assume the upper row containsone X-ship, then the unique solution to the puzzle from Figure 5d
must be respected.

From the definition oft it follows that every variablexj is assigned only one truth value. In Figure 4 we
see that ift(xj) equalstrue (false), then it is put on the right (left) column. Now assume thatt(xj) = true,
then the right column tally of3 (or 4, in casexj occurs four times inφ) is satisfied; the left column tally of
3 (4) is satisfied by putting theZj-ship on the left open slot of the gadget in Figure 3f (3e). Theargument
runs analogously in caset(xj) = false. Again the position of theZj-ship is uniquely determined by the
arrangement of theX-ships.

Conversely, assume the Battleships puzzle ofϕ is solvable and thatϕ hasm different variables. We can
show by an easy inductive argument that in every solution theYi-ships of length4i and4i + 1 must be put
on the gadget covering regionYi. The base case would concern theYm-ships of length4m and4m + 1.
These ships evidently fit theYm-gadget, but do not fit any other gadget due to the factor4.
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Furthermore, it is not hard to see that if a puzzle is solvable, everyZj-ship must be put on theZj-gadget.
As a consequence, everyX-gadget contains exactly oneX-ship.

The positioning of everyZj-ship on theZj-gadget enforces that the truth assignment of every variable xj

is consistent throughout the clauses inϕ; whereas every solvedYi-gadget guarantees that clauseCi is true.
Hence, the arrangement ofX-ships encodes a unique satisfying truth assignment.

This proves the existence of a parsimonious reduction from3-SAT to BATTLESHIPS. ¤

4. PROMISE VARIANT

One can reasonably object against the formalization of Battleships intoBATTLESHIPS that this is not the
problem we actually solve at our leisure. The magazines offering the puzzles tacitly promise that there is a
unique solution to the puzzle printed. Intuition predicts that finding a unique solution is easier than finding
out whether there is a solution at all. However, it follows asa corollary to our parsimonious reduction from
3-SAT to BATTLESHIPS that this promise variant isNP-hard as well, under randomized reductions.

We define the promise variant,PROMISE BATTLESHIPSas follows: Given a Battleships puzzle〈I, C,R, F 〉
and the promise that this puzzle has a unique solution; produce the solution.

Valiant and Vazirani (Undefined reference) proved that anyNP-complete problem to whichSAT is par-
simoniously reducible has anNP-hard promise variant, under randomized reductions. Sincesatisfiabil-
ity is parsimoniously reducible to3-SAT; and 3-SAT is parsimoniously reducible toBATTLESHIPS, via
3, {3, 4}-SAT, it follows immediately thatPROMISE BATTLESHIPSis NP-hard. Hence, it isNP-complete
under randomized reductions.

Furthermore, it also follows fromUndefined reference, that the existence of a randomized polynomial-time
procedure for decidingBATTLESHIPS implies thatNP = RP, which is generally considered unlikely.

5. HUMANLY SOLVABLE BATTLESHIPS PUZZLES WITH UNIQUE SOLUTION S

It might come as a surprise that alsoPROMISE BATTLESHIPSis NP-complete under randomized reductions,
since according to our daily experience in solving a Battleships puzzle in a magazine every step is a nec-
essary one — justified by a rule that is a logical consequence of conditions C1 to C4. For instance, to get
from the left-most puzzle in Figure 1 to the puzzle in the middle and from there to the solution, one only
needs the following rules (and their column analogues).

If the largest ship is not put in the grid yet and of all columns and rows only rowi can host it,then
every cell(i, j) that would contain a ship segment under any allowed positioning of the largest ship,
must contain a ship segment.

If the number of ship segments in rowi equalsR(i) and the content of cell(i, j) is unknown,then
cell (i, j) must be filled with water.

If the number of ship segments in rowi plus the number of cells(i, j) with unknown value equals
R(i), then all undecided cells(i, j) must contain a ship segment.

The fact that the antecedents of these rules can be checked tohold in linear time, makes them locally
applicable. As it appears, humans use rules that are effectively computable and that follow logically from
conditions C1 to C4. We call such ruleshumanly applicable. It is exactly this property of human puzzle-
solving that (automated) Battleships puzzle-composers doexploit (Undefined reference): One starts out
with a correctly solved Battleships puzzle and iterativelyremoves information by inversely applying a pre-
defined set of humanly applicable rules. The following rule,for instance, describes the inverse application
of one of the above rules.
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If the number of ship segments in rowi equalsR(i) and cell(i, j) contains water,then change(i, j)’s
water-filling into?.

The result of removing information by inversely applying a set of rules is a puzzle that itself is of course
solvable by the same set of rules, used straightforwardly. Furthermore, note that this procedure guarantees
a puzzle instance with a unique solution. This is basically due to the fact that we start out with a solution.
Every time we retract information from it, we do so in such a way that it can be restored using rules that are
logical consequences of conditions C1 to C4.

In fact, the difficulty indications that are provided byPuzzelsport (Undefined reference) are based on a
classification of the rules used to create a puzzle. If hard rules are used to create the puzzle, hard rules will
have to be used to solve it. It then is obvious that the class ofBattleships puzzles that are solvable by a set of
rules is a subset of the class of puzzles that are solvable by abigger set of rules — provided that the former
is not logically equivalent to the latter. Asking whether there is any effectively searchable set of humanly
applicable rules that solve any instance ofPROMISE BATTLESHIPSis to ask whetherP equalsNP, under
randomized reductions.

6. SUMMARY OF RESULTS

In this contribution we proved that Battleships puzzles in general cannot be solved effectively. However,
Battleships puzzles are often accompanied by their solution, for players to check their solution or to get a
hint on how to arrive at the solution. We showed that the fact that such puzzles are humanly solvable cannot
be due to the fact that they have unique solutions. Finally, we provided hints as to how one can generate
Battleships puzzles, that are both uniquely and humanly solvable.

Although our formal results are restricted to Battleships we are convinced that our ideas and methods apply
to many other one-player puzzles encountered in magazines and on the Internet.
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